Skip to main content

Mental Models for Google ADK Mastery - Complete Guide 2025

🎯 Purpose: A comprehensive mental framework for understanding Google Agent Development Kit (ADK) and Generative AI concepts from first principles.

πŸ“š Source of Truth: google/adk-python (ADK 1.15) + Official Google Documentation + 28 Tutorials

πŸŽ“ Status: Complete mental model synthesis covering all ADK patterns and Generative AI fundamentals


[BRAIN] Core Mental Model: The Agent as a System​

The Agent = Human Worker Analogy​

Think of an AI agent like a human office worker:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ AI AGENT β”‚
β”‚ β”‚
β”‚ [BRAIN] BRAIN (Model) [MEM] MEMORY (Context) β”‚
β”‚ - Reasoning - Short-term: Session State β”‚
β”‚ - Decision making - Long-term: Memory Service β”‚
β”‚ - Language understanding - Working memory: temp: state β”‚
β”‚ β”‚
β”‚ [TOOLS] TOOLS (Capabilities) [INSTR] INSTRUCTIONS (Behavior) β”‚
β”‚ - Search web - Personality β”‚
β”‚ - Execute code - Rules & constraints β”‚
β”‚ - Call APIs - Task guidance β”‚
β”‚ - File operations - Examples β”‚
β”‚ β”‚
β”‚ [FLOW] WORKFLOWS (Process) [CALLB] CALLBACKS (Supervision) β”‚
β”‚ - Sequential steps - Before/after hooks β”‚
β”‚ - Parallel tasks - Guardrails β”‚
β”‚ - Iterative loops - Logging β”‚
β”‚ - Dynamic routing - Policy enforcement β”‚
β”‚ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Key Insight: An agent is NOT just an LLM. It's a complete system with:

  • Brain (LLM model) for reasoning
  • Hands (tools) for taking actions
  • Memory (state + memory service) for context
  • Instructions (prompts) for guidance
  • Process (workflows) for structured execution
  • Supervision (callbacks) for control

Source: https://github.com/google/adk-python/blob/main/src/google/adk/agents/base_agent.py


πŸ—οΈ Foundational Concepts​

The Three Types of Agents​

Mental Model: Agents are like workers with different thinking styles:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ AGENT TYPES β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β”‚
β”‚ [BRAIN] LLM AGENT (Thinker) β”‚
β”‚ "I reason and decide dynamically" β”‚
β”‚ - Powered by language model β”‚
β”‚ - Flexible, creative, adaptive β”‚
β”‚ - Uses: Conversations, analysis, creative tasks β”‚
β”‚ Source: agents/llm_agent.py β”‚
β”‚ β”‚
β”‚ [FLOW] WORKFLOW AGENT (Manager) β”‚
β”‚ "I follow a strict process" β”‚
β”‚ - Deterministic execution β”‚
β”‚ - Orchestrates other agents β”‚
β”‚ - Types: Sequential, Parallel, Loop β”‚
β”‚ Uses: Pipelines, coordination, iteration β”‚
β”‚ Source: agents/workflow_agents/ β”‚
β”‚ β”‚
β”‚ [REMOTE] REMOTE AGENT (External Expert) β”‚
β”‚ "I'm a specialist from another service" β”‚
β”‚ - HTTP-based agent communication β”‚
β”‚ - A2A protocol β”‚
β”‚ - Uses: Microservices, specialized domains β”‚
β”‚ Source: agents/remote_a2a_agent.py β”‚
β”‚ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Rule of Thumb:

  • Use LLM Agent when: Need reasoning, flexibility, natural language
  • Use Workflow Agent when: Need predictable, ordered execution
  • Use Remote Agent when: Need to call external services

πŸ“š Learning Navigation​

This mental models guide is organized into focused sections for optimal learning:

Agent Architecture →​

  • Agent hierarchy and composition patterns
  • State vs memory management
  • Session and user context handling

Tools & Capabilities →​

  • Tool ecosystem (Function, OpenAPI, MCP, Built-in)
  • Tool selection and implementation patterns
  • Parallel tool execution

πŸŽ“ Tutorials: 02, 03, 11, 16

Workflows & Orchestration →​

  • Sequential, parallel, and loop workflow patterns
  • Complex pipeline construction
  • Performance optimization

πŸŽ“ Tutorials: 04, 05, 06, 07

LLM Integration →​

  • Prompt engineering and instruction patterns
  • Grounding and real-world connection
  • Thinking and reasoning frameworks

πŸŽ“ Tutorials: 12, 22, 28

Production & Deployment →​

  • Deployment environments and strategies
  • Observability and monitoring
  • Service configuration

πŸŽ“ Tutorials: 23, 24, 25

Advanced Patterns →​

  • Streaming and real-time interaction
  • MCP protocol and standardization
  • Agent-to-agent communication

πŸŽ“ Tutorials: 13, 14, 15, 17

Decision Frameworks →​

  • When to use each pattern
  • Cost optimization strategies
  • Pattern selection guides

Learning Paths →​

  • Structured learning approaches
  • Tutorial sequences
  • Skill progression

Reference Guide →​

  • Source code navigation
  • Quick reference tables
  • API and configuration guides

Glossary →​

  • ADK terms and concepts
  • Terminology definitions
  • Quick reference tables

ADK Cheat Sheet →​

  • Quick reference guide
  • Commands, patterns, and best practices
  • Troubleshooting and common issues

🎯 Key Principles & Rules of Thumb​

The 10 Commandments of ADK Development​

  1. Agent = System, Not Just LLM

    • Always think: Model + Tools + State + Instructions + Workflows
  2. State for Short-term, Memory for Long-term

    • Session state = this conversation
    • Memory service = all conversations
  3. Sequential When Order Matters, Parallel When Speed Matters

    • Dependencies β†’ Sequential
    • Independent β†’ Parallel
  4. Loop for Quality, Not for Logic

    • Use LoopAgent for refinement
    • Use SequentialAgent for ordered steps
  5. Ground Everything That Needs to Be True

    • Facts β†’ google_search
    • Data β†’ database tools
    • Locations β†’ google_maps
  6. Tools Are Capabilities, Not Afterthoughts

    • Design tools with agents in mind
    • Return structured data (dicts)
    • Include clear docstrings
  7. Callbacks for Control, Not Core Logic

    • Use for guardrails, logging, monitoring
    • Don't put business logic in callbacks
  8. Start Simple, Add Complexity When Needed

    • Single agent β†’ Multi-agent
    • Sequential β†’ Add parallel
    • No thinking β†’ Add planner
  9. Evaluate Early, Evaluate Often

    • Create test sets from day one
    • Run evals with every major change
    • Use Trace view for debugging
  10. Production β‰  Development

    • Local: InMemory services
    • Production: Persistent services (PostgreSQL, GCS, Vertex)

πŸŽ“ Getting Started​

Recommended Path: Start with this overview, then follow the Foundation Learning Path for a structured approach to mastering ADK.

Quick Start: If you're new to ADK, begin with Tutorial 01: Hello World Agent after reading this overview.

Reference: Check the Glossary for definitions of key ADK terms and concepts.

Source Code: All mental models are derived from the official ADK source code in https://github.com/google/adk-python. When in doubt, refer to the source code for truth.


πŸ“– Document Metadata​

Created: 2025-01-26 Version: 1.0 Source: Research from https://github.com/google/adk-python + 28 comprehensive tutorials Purpose: Mental models for mastering Google ADK and Generative AI Audience: Developers learning ADK from beginner to advanced Maintenance: Update as ADK evolves (weekly releases)

πŸ† You now have the foundation to build exceptional AI agents with Google ADK!