Skip to main content

Advanced Patterns

Purpose: Explore cutting-edge ADK capabilities for real-time interaction, standardized protocols, and distributed agent systems.

Source of Truth: google/adk-python/src/google/adk/agents/live_request_queue.py (ADK 1.15) + MCP/A2A implementations

Table of Contents​

  1. Streaming & Real-Time Interaction
    • Live conversations with users
  2. MCP Protocol
    • Universal tool standards
  3. Agent-to-Agent Communication
    • Distributed agent systems

Streaming & Real-Time Interaction​

SSE (Server-Sent Events)​

# Text streaming to users
async def stream_response(query):
runner = Runner()
async for event in runner.run_async(streaming=SSE):
if event.type == 'content':
yield f"data: {event.content}\n\n"
elif event.type == 'done':
yield "data: [DONE]\n\n"

BIDI (Bidirectional Streaming)​

# Voice/video conversations
queue = LiveRequestQueue()
runner = Runner()

async def live_conversation():
async for event in runner.run_live(queue):
if event.type == 'audio_response':
play_audio(event.audio_data)

# Send user input
queue.send_realtime(audio_blob)

Models: gemini-2.0-flash-live-*, gemini-live-2.5-*


πŸ”Œ MCP (Model Context Protocol)​

Universal Tool Standard​

# Standardized tool interface
mcp_tools = MCPToolset(
connection_params=StdioConnectionParams(
command='npx',
args=['-y', '@modelcontextprotocol/server-filesystem', '/data']
)
)

# Works with any MCP-compatible server
# - Filesystem operations
# - Database queries
# - Git operations
# - Slack/Teams integration

MCP Benefits​

  • Interoperability: One protocol, many tools
  • Security: Built-in authentication
  • Discovery: Auto-detect capabilities
  • Community: 100+ MCP servers available

🀝 A2A (Agent-to-Agent Communication)​

Microservices Architecture​

# Remote agent integration
youtube_agent = RemoteA2aAgent(
name='youtube_expert',
base_url='https://youtube-agent.company.com'
)

# Local agent uses remote expertise
orchestrator = Agent(
name="content_strategist",
tools=[AgentTool(youtube_agent)],
instruction="Create strategy using YouTube analytics"
)

A2A vs Local Multi-Agent​

  • Distribution: Agents on different services
  • Scaling: Independent deployment/scaling
  • Teams: Cross-team collaboration
  • Specialization: Domain-specific experts

πŸš€ Next-Level Capabilities​

Multimodal Integration​

  • Images: Vision analysis and generation
  • Audio: Speech recognition and synthesis
  • Video: Real-time video processing
  • Documents: PDF/text extraction and analysis

Code Execution​

# Built-in Python interpreter
code_agent = Agent(
name="programmer",
model="gemini-2.0-flash", # Code execution enabled
instruction="Write and test Python code"
)

Custom Planners​

# Advanced reasoning strategies
reasoning_planner = CustomPlanner(
strategy="tree_of_thought",
max_depth=5
)

agent = Agent(
name="deep_reasoner",
planner=reasoning_planner
)

🎯 Key Takeaways​

  1. Streaming: Real-time text (SSE) and voice/video (BIDI)
  2. MCP: Universal tool protocol for interoperability
  3. A2A: Distributed agent communication
  4. Multimodal: Images, audio, video, documents
  5. Code Execution: Built-in Python interpreter
  6. Custom Planners: Advanced reasoning strategies

πŸ”— Next: Master Decision Frameworks for choosing the right patterns.